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ABSTRACT

This paper proposes a regularized regression procedure for finding a predictive relation between one

variable and a field of other variables. The procedure estimates a linear prediction model under the constraint

that the regression coefficients have smooth spatial structure. The smoothness constraint is imposed using a

novel approach based on the eigenvectors of the Laplace operator over the domain, which results in a con-

strained optimization problem equivalent to either ridge regression or least absolute shrinkage and selection

operator (LASSO) regression, which can be solved by standard numerical software. In addition, this paper

explores an unconventional procedure whereby regression models are estimated from dynamical model

output and then verified against observations—the reverse of the traditional order. The methodology is il-

lustrated by constructing statistical prediction models of summer Texas-area temperature based on concur-

rent Pacific sea surface temperature (SST). None of the regularized regression models have statistically

significant skill when estimated fromobservations. In contrast, when estimated fromdynamical model output,

the regression models have skill with respect to dynamical model data because of the substantially larger

sample size available from dynamical model output. In addition, the regression models estimated from dy-

namical model data can predict observed anomalies with significant skill, even though no observations were

used directly to estimate the regression models. The results indicate that dynamical models had no significant

skill because they could not accurately predict the SST itself, not because they could not capture realistic SST

teleconnections.

1. Introduction

It is well established that tropical sea surface tem-

peratures (SSTs) influence midlatitude weather on sea-

sonal time scales (Ropelewski and Halpert 1987;

Trenberth et al. 1998; Straus et al. 2003; Shukla and

Kinter 2006). This influence arises from the tendency of

atmospheric convection to intensify over anomalously

warm SSTs in the tropics and thereby excite perturba-

tions in the atmosphere that propagate around the world

(Opsteegh and Van den Dool 1980; Horel and Wallace

1981; Hoskins and Karoly 1981; Simmons et al. 1983).

The spatial structure of the midlatitude response to

tropical SST perturbations is a robust property in at-

mospheric general circulation models (Geisler et al.

1985; Yang and DelSole 2012). Seasonal weather could

be predicted to some extent if its relation with SST

perturbations could be identified. A common, but

problematic, approach to identifying such relations is to

compute a regression map between the quantity being

predicted and SSTs and then select certain SST ‘‘hot

spots’’ as indices that can serve as predictors. The

problem with this approach is that when hundreds or

thousands of regression coefficients are computed, as

done to construct a regression map, there is a high

probability that many values will exceed standard sig-

nificance thresholds even in the absence of a predictive

relation (DelSole and Shukla 2009). This procedure is an

example of data fishing (or screening) and is widely

discredited (Caldwell et al. 2014; Lo et al. 2015; Taylor

and Tibshirani 2015).

A critical step in statistical seasonal prediction is

identifying predictive relations between a variable and a

field of other variables, where the number of field vari-

ables is much larger than the sample size. This problem
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occurs in many other fields, including economics, data

classification, pattern recognition, and machine learn-

ing. It is therefore natural to investigate whether

methods that have been applied successfully in other

fields might be helpful in seasonal prediction. The fun-

damental idea in all such methods is to impose con-

straints on the unknown parameters, where the

constraints are derived from physical reasoning or other

prior knowledge that is independent of the data. The

purpose of this paper is to develop prediction models

based on the hypothesis that seasonal midlatitude

weather is linearly related to SST, where the linear re-

lation is defined by weighting coefficients that have

smooth spatial structure. The smoothness hypothesis is

motivated mostly by practical considerations: small-

scale structure in the coefficients would be difficult to

reproduce across dynamical models and difficult to ob-

serve, so it is prudent to filter them out. The smoothness

constraint is imposed using a novel approach based on

the eigenvectors of the Laplace operator in the ocean

basin. Specifically, these eigenvectors can be ordered

by a measure of spatial scale; hence, the smoothness

constraint can be imposed by requiring that the co-

efficients for small-scale eigenvectors be ‘‘small’’ or

zero. The resulting constrained minimization problem

reduces to regularized regression, which can be solved

by standard numerical packages.

In addition to proposing new prediction models, we

also utilize dynamical models in an unconventional way.

The conventional approach to constructing empirical

prediction models (Barnston 1994) is to estimate the

empirical model from observations, validate the model

using cross validation, and then compare the model to

dynamical models to understand the underlying physics.

Instead, we reverse the order of this procedure. Specif-

ically, we estimate empirical models from dynamical

model output and then validate the empirical model

using observations. Obviously, this approach, which has

been suggested previously (Quan et al. 2006), will work

only if the dynamical model from which the empirical

model is estimated is realistic. To the extent that the

dynamical model is adequate, a major advantage of this

approach is that the sample size available from dynam-

ical model output often is several times larger than that

of observations, owing to the multiple ensemble mem-

bers and start dates (or to availability of long control

runs). The larger sample size opens opportunities for a

richer variety of statistical or data-mining methodol-

ogies. This approach also provides an alternative way

to compare dynamical models: empirical models de-

rived from different dynamical models may have very

different skills, which may clarify model errors or

inadequacies.

The methodologies for constructing regularized re-

gression models are described in the next section. In

addition to the new methods, we also consider principal

component regression, in which a variable is predicted

based on a linear combination of a small number of

leading principal components (Barnston and Smith

1996). To illustrate the methodologies, we apply them to

predict summer Texas-area temperature based on si-

multaneous and antecedent Pacific SSTs. The datasets

for this analysis are described in section 3. The result of

applying the above methods to observations and dy-

namical model hindcasts is described in section 4. We

show that none of the regression models estimated from

observations have significant prediction skill. Next, re-

gression models are estimated from dynamical model

output without direct use of any observational data. In

this case, the regression models derived from most dy-

namical models have skill with respect to dynamical

model output, presumably because of the substantially

larger sample size obtained by pooling multiple en-

semble members and initial start months. These re-

gression models are then applied to observational data

to make predictions. We find that some regularized re-

gression models produce skillful predictions of obser-

vational data, even though they were estimated from

dynamical model output and even though the regulari-

zation procedure cannot produce skillful models from

(shorter) observational data. We further examine the

skill of multimodel regressions, the sensitivity of skill to

sample size, and the skill based on antecedent SSTs.

Finally, we show that North American Multimodel

Ensemble (NMME) hindcasts themselves had no skill at

predicting Texas-area temperature. The regression

model results are used to argue that the lack of skill is

not because the dynamical models do not capture re-

alistic relations with SST but rather because the NMME

models could not accurately predict the relevant SST

patterns.We conclude with a summary and discussion of

our results.

2. Methodology

We consider the problem of predicting a variable y

given a spatial fieldX. Let yn be the predictand at the nth

time step andXn,s be the predictor at the nth time step and

sth spatial location, where n5 1, . . . , N and s5 1, . . . , S.

We assume the two variables are related as follows:

y5Xw1 � , (1)

where w is an S-dimensional vector of coefficients and

� is an unpredictable, random term. Ordinary least

squares (OLS) estimates the coefficients w by minimiz-

ing the sum square residuals:
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F
0
(w)5 ky2Xwk2 , (2)

where k�k denotes the L2 norm (i.e., kzk2 5 zTz for any

vector z). For the type of problems considered in this

paper, the number of predictors S far exceeds the sample

sizeN, in which case theminimization problem is grossly

underdetermined [i.e., coefficients w can be found such

that the linear model fits the data perfectly, in the sense

that the residuals in (2) vanish]. In this paper, we con-

sider methods for estimating w based on minimizing the

cost function:

F
l
(w)5 ky2Xwk2 1 lR(w) , (3)

where R(w) is a regularization function that imposes a

penalty on the complexity of w, typically by

constraining a vector norm, and l is a parameter the

controls the strength of the regularization.

A common regularization in seasonal prediction is

principal component regression (PCR), in which the

predictors are represented by a small number of

principal components of the predictor data (Barnston

and Smith 1996). In this case, the regularization

function is ‘‘sharp’’ in the sense that the weights for

the leading T principal components are unconstrained

while the weights for the other principal components

are constrained to be zero. The solution is most con-

veniently obtained by replacing the N 3 S predictor

matrix X in (3) by the N 3 T principal component

matrix ~X and then applying OLS to obtain the T co-

efficients w.

The most common regularizations in regression are

the L1 and L2 norms. The L1 norm is the sum of the

absolute values of the weights:

R
1
(w)5 �

S

s51

jw
s
j . (4)

Minimizing (3) based on the L1 norm (4) is called

least absolute shrinkage and selection operator

(LASSO) (Tibshirani 1996, 2011). LASSO tends to

set certain elements of w exactly to zero, which fa-

cilitates interpretation by indicating that the corre-

sponding predictors can be discarded. In contrast,

optimization based on the L2 norm is called ridge

regression and tends to shrink all elements of w to-

ward zero:

R
2
(w)5 �

S

s51

w2
s . (5)

There are strong theoretical justifications for both

ridge and LASSO: both can be derived from an

empirical Bayes theory (Efron and Morris 1971), and

both are shrinkage estimators, which tend to have less

expected total squared error than maximum likelihood

estimates, for a suitable choice of l (Van Houwelingen

2001). Ridge and LASSO regression can be solved us-

ing standard mathematical software packages (e.g., R

and MATLAB).

While LASSO and ridge have strong statistical

justifications, they have only weak physical justifica-

tion: if the predictorX is SST, then LASSO effectively

assumes that only a few SST grid points influence

midlatitude weather, whereas ridge effectively as-

sumes that most coefficients are ‘‘small.’’ Neither of

these assumptions is compelling. We propose a new

regularization constraint based on the hypothesis that

large-scale SST structures provide the most robust

predictive information for seasonal weather. This

hypothesis is motivated mostly by practical consider-

ations: small-scale SST structures are difficult to ob-

serve and not robust across climate models, so they

should be filtered out. This principle can be expressed

equivalently by saying that if the predictors are rep-

resented in a basis set ordered by spatial scale, then

most of the amplitudes of the basis vectors are zero or

close to zero. This formulation is exactly a LASSO or

ridge regression.

A natural basis set for filtering out short spatial

scales is the eigenvectors of the Laplace operator.

On a global domain, Laplacian eigenvectors are the

spherical harmonics and easily computable. Over an

ocean basin, these eigenvectors are difficult to com-

pute using standard boundary conditions. Recent ad-

vances in signal processing (Saito 2008) have led to

efficient algorithms for computing these eigenvectors

in arbitrary domains. These eigenvectors typically

satisfy unconventional boundary conditions, but the

precise boundary conditions are irrelevant if the vec-

tors are used merely as a basis set. We compute the

eigenvectors using the Green’s function technique of

DelSole and Tippett (2015). The resulting ei-

genfunctions are orthogonal with respect to an area-

weighted norm and normalized to unit-area-weighted

norm. The leading Laplacian eigenvectors in the North

Pacific are shown in Fig. 1. The first eigenfunction, not

shown, is merely a constant and corresponds to the

mean over the North Pacific basin. The second and

third eigenfunctions measure the east–west and north–

south gradients across the Pacific, respectively. Sub-

sequent eigenfunctions are characterized by tripoles,

quadrupoles, etc. of decreasing length scale.

To make use of the Laplacian eigenvectors, the T

‘‘gravest’’ Laplacian eigenvectors are projected onto the

SST data to produce T time series, which are collected
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into the N 3 T predictor matrix ~X. Then, the weights ~w

for the Laplacian eigenvectors are determined by

minimizing

F
l
(~w)5 ky2 ~X~wk2 1 lR(~w) , (6)

where the regularization function R(~w) is either theL1 or

L2 norm, or a ‘‘sharp’’ regularization that sets all co-

efficients beyond a threshold to zero. The maximum

number of Laplacian eigenvectors is set to 50; our results

are not sensitive to the choice of the upper limit.

In general, the regression model (1) should include an

intercept term, but the intercept term should not be in-

cluded in the penalty functions of (4) or (5); otherwise the

solution would depend on the (arbitrary) choice of

origin. It can be shown that minimizing (3) with the

intercept is equivalent to minimizing (3) without the

intercept, provided all variables are centered. Ac-

cordingly, all predictors and predictands were centered

before finding the ridge and LASSO solutions.

It should be recognized that the coefficients esti-

mated from ridge or LASSO depend on the scale (i.e.,

standard deviation) of the predictors. In contrast, OLS

is invariant to nonsingular linear transformation of the

predictors and thus does not depend on the scale of the

predictors. In regularized regression, it is customary to

rescale the predictors to have identical variances,

which effectively penalizes all Laplacian functions

equally. However, to be consistent with the smoothness

hypothesis, small-scale patterns should be penalized

more strongly than large-scale patterns. We explored a

wide variety of penalty functions that increase mono-

tonically with wavenumber and found that the final

predictions are not sensitive to the choice of penalty

function. Accordingly, a convenient approach is to

simply use the time series of the Laplacian eigenvectors

with no rescaling. This approach effectively imposes a

scale-dependent penalty function because, as is well

known in geophysical fluid dynamics, large-scale pat-

terns tend to have larger variance than small-scale

patterns (Charney 1971; Nastrom and Gage 1985).

Consequently, the standard deviation of the time series

decreases with wavenumber, and it can be shown that

this corresponds to a penalty function that increases

with wavenumber if the time series were normalized to

the same variance.

A key question in regularized regression is how

to select the regularization parameter l. A common

FIG. 1. Spatial patterns of Laplacian eigenvectors 2, 3, 4, and 5 in the North Pacific between 308S
and 608N.
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approach is based on cross validation, in which one

sample is withheld and the remaining sample is used

to estimate a regression model, after which the re-

sulting regression model is used to predict the with-

held sample. The procedure is repeated for each

sample in turn until all samples have been used at

least once for validation. In the case of PCR, we em-

phasize that the empirical orthogonal functions

(EOFs) and centering are recomputed for each new

training set in the cross-validation procedure. In

practice, though, the results are essentially unchanged

if the EOFs are computed once for the whole period.

However, we found that leave-one-out cross va-

lidation yielded unrealistically high skill scores

(e.g., $0.9) when estimating models from observa-

tions, for reasons that were difficult to ascertain. To

explore this situation further, we applied tenfold

cross validation and found that the regression models

estimated from observations had no significant skill

for any choice of regularization. These conflicting

results demonstrate the danger in estimating re-

gression models from observations of the size con-

sidered here (i.e., 33 yr or fewer). However, different

cross-validation methods yielded similar results

when applied to dynamical model output. The results

presented in section 4 are based on tenfold cross

validation, which is a generally recommended

method in the statistics literature (Hastie et al. 2009,

p. 243).

Many studies suggest selecting the model that mini-

mizes the cross-validated mean square error (CVMSE).

In contrast, Hastie et al. (2009) recommend selecting the

‘‘simplest’’ model within one standard deviation of the

minimum CVMSE. In the context of minimizing (6), a

‘‘simpler’’ model is a model with larger regularization

parameter l. However, our data are correlated with

each other because we pool ensemble members and

hindcasts initialized one month apart. Therefore, the

sample standard deviation probably overestimates the

true standard deviation. Nevertheless, the standard de-

viation of the skill score will be shown in the results to

follow as a reference.

3. Data

Wefirst attempt to identify relations between SST and

land variables in observational data. For the predictand,

we use summer (June–August) temperature over the

land region bounded by 948–1068Wand 268–368N, which

is centered over Texas. This area is chosen because the

drought or heat wave in that region during 2011 raised

critical questions about the role of ocean temperatures

and the extent to which such events can be predicted in

the future (Hoerling et al. 2012). The present paper

extends previous studies by examining the extent to

which such events can be predicted on seasonal time

scales by dynamical models and by regression models

using SSTs as predictors. Observational estimates of

summer land temperature are from the dataset of Fan

andVan denDool (2008), which is a combination of data

from the Global Historical Climatology Network,

TABLE 1. List of NMME models and relevant details (Kirtman

et al. 2014). (FLOR is Forecast-Oriented Low Ocean Resolution;

RSMAS is Rosenstiel School of Marine and Atmospheric Science.

Additional acronym expansions are available online at http://www.

ametsoc.org/PubsAcronymList.)

Full model name

Shortened

model name

Year of

first

forecast Status

NCEP CFSv1 CFSv1 2011 Retired

NCEP CFSv2 CFSv2 2011 Active

CMC1 CanCM3 CanCM3 2011 Active

CMC2 CanCM4 CanCM4 2011 Active

GFDL CM2.1-aer04 CM2.1-aer04 2011 Active

GFDL CM2.5-FLOR-A06 FLOR-A 2014 Active

GFDL CM2.5-FLOR-B01 FLOR-B 2014 Active

IRI ECHAM4.5-Anomaly IRI-A 2011 Retired

IRI ECHAM4.5-Direct IRI-D 2011 Retired

NASA GMAO-062012 NASA 2011 Active

COLA-RSMAS CCSM3 CCSM3 2011 Active

COLA-RSMAS CCSM4 CCSM4 2014 Active

FIG. 2. (top) The observed June–August Texas-area temperature

anomaly and (bottom) the regression coefficients with concurrent

Pacific SSTs. Anomaly refers to departures from the 1982–2014

mean. The units of the regression coefficients are SST in kelvin per

Texas-area temperature in kelvin.
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version 2, and the Climate Anomaly Monitoring Sys-

tem.1 For the predictors, we use the 3-month mean SST

in the Pacific Ocean over 308S–368N derived from the

NOAA Optimum Interpolation Sea Surface Tempera-

ture, version 2 (OISSTv2; Reynolds et al. 2002).2

We also derive SST–land relations from climate

model simulations. Specifically, we use hindcasts and

forecasts from the NMME (Kirtman et al. 2014) during

the period 1982–2014. A list of models is given in Table

1. A hindcast refers to a dynamical model prediction of

historical data in which the verification is available at

initialization time. Each model generates an ensemble

forecast in which multiple predictions are generated

from slightly different initial conditions, each of which

are plausible realizations of the state of the system given

the available observations. The reason for choosing this

dataset is that the associated dynamical models have

been designed and validated specifically for seasonal

prediction, so these models are likely to capture realistic

seasonal relations between SST and land variables.

Unfortunately, seasonal prediction datasets are rela-

tively short (e.g., about 30 yr). To increase the sample

size, we pool individual ensemble members initialized in

the months preceding the June–August verification pe-

riod. To be clear, we do not use ensemble averages, but

rather we attempt to find the relation between summer

land and SST in individual ensemble members. To avoid

differences due to different ensemble sizes, we use an

FIG. 3. CVSS for predicting Texas-area summer (JJA) temperature based on concurrent (JJA) Pacific SSTs

between 308S and 608N using (a) a truncated set of Laplacians, (b) PCR, (c) ridge regression, and (d) LASSO. The

error bar shows the standard error of the skill score at the maximum score.

1 Downloaded from http://www.esrl.noaa.gov/psd/data/gridded/

data.ghcncams.html.
2 Downloaded from http://www.esrl.noaa.gov/psd/data/gridded/

data.noaa.oisst.v2.html.
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equal number of ensemble members per model. Spe-

cifically, we use six members, which is the smallest en-

semble size among the models in this dataset. For each

model, then, there are 33 years, five initial months

(January–May), and six ensemble members, giving a

total of 990 samples per model. However, some models

do not have the full 33 years; these models are desig-

nated as ‘‘retired’’ in Table 1.

4. Results

The variable we want to predict is summer (June–

August) Texas-area temperature. We first consider

predictions based on concurrent SST (i.e., June–August

SST). Although predictions based on concurrent SST

are not true predictions, they nevertheless are in-

vestigated extensively in seasonal prediction studies

because they define teleconnection patterns and define

an upper bound on predictability. Later (in section 4d)

we consider time-lagged relations between SST and

Texas-area temperature.

Both SST and Texas-area temperature exhibit a sig-

nificant trend during the period under investigation. The

trend presumably reflects the global warming signal and

does not reflect a causal relation between land temper-

ature and SST. If these trends are not removed, then all

regression models have apparent skill even at large lags.

To isolate predictability caused by SST anomalies, we

remove the linear trend from SST and Texas-area tem-

perature prior to analysis.

The observed anomaly time series, relative to the 1982–

2014 mean, is shown in Fig. 2. The Texas heat wave of

2011 is evident. To gain insight into the Pacific SST pat-

tern relevant to this prediction, it is customary to

construct a regressionmap, which shows the least squares

regression coefficient between Texas-area temperature T

and local SST from the regression model:

SST(s,n)5 p(s)T(n)1 noise, (7)

where, as in section 2, s and n denote the spatial location

and time step, respectively. The least squares solution is

equivalent to estimating p(s) independently and in-

dividually at each grid point. The resulting coefficients can

be collected and displayed on a single map. The regression

map p(s) derived from observations, shown at the bottom

of Fig. 2, is dominated by a hot spot in the north-central

Pacific and negative values to the southeast. This regression

pattern is quite similar to the actual SST anomaly that oc-

curred in 2011 in association with the extreme Texas heat

wave (Hoerling et al. 2012). Unfortunately, this pattern is

not of direct use for prediction because the regression

model (7) requires that the pattern bemultiplied by Texas-

area temperature, the variable we want to predict, which is

not ordinarily available in a real prediction setting. Various

studies have proposed procedures for deriving predictors

from a regression map, but most of these procedures have

been discredited (DelSole and Shukla 2009).

a. Predictions based on observations only

We use the methods discussed in section 2 to derive a

prediction model for summer Texas-area temperature

based on concurrent Pacific SST. The skill of the pre-

diction model is measured by tenfold cross validation, as

discussed in section 2. This procedure generates N pre-

dictions for N samples from which the mean square error

(MSE) can be computed. The skill of the regressionmodel

is measured by the cross-validated skill score (CVSS):

CVSS5 12
MSE

var(y)
, (8)

where var(y) denotes the variance of summer mean

Texas-area temperature. CVSS can be interpreted as a

measure of the fraction of variance explained by the

regression model.

The cross-validated skill of four regularized re-

gression models are shown in Fig. 3. The error bar in

each panel shows the standard error of the maximum

score. None of the regression models show significant

skill when estimated directly from observations. Results

from PCR are essentially unchanged if the EOFs are

FIG. 4. Schematic indicating whether a given Laplacian eigen-

vector was selected (black) or not (white) by LASSO as a function

of regularization parameter. LASSO is used to predict summer

Texas-area temperature based on observed JJA Pacific SSTs be-

tween 308S and 608N.
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fixed during cross validation. In the remainder of the

paper, the spatial patterns of the EOFs are computed

from the entire dataset and held fixed during cross

validation.

Recall that LASSO tends to set some coefficients

exactly to zero. The distribution of nonzero coefficients

as a function of regularization parameter is shown in

Fig. 4. As expected, the number of nonzero coefficients

decreases with increasing LASSO parameter. Also, the

coefficients become slightly concentrated near the bot-

tom of Fig. 4 as the regularization parameter increases,

reflecting the filtering of small-scale spatial patterns with

increasing regularization parameter.

b. Regressions learned from dynamical models and
tested in ‘‘model world’’

We now apply regularized regression to dynamical

model output. Although the dynamical models were

used originally to perform ensemble predictions, we

disregard this fact and simply use the individual en-

semble members as additional realizations of the sys-

tem. This means that the initialization time is not

relevant for prediction except insofar as it provides ad-

ditional realizations. Accordingly, we pool the JJA

Texas-area temperature and concurrent sea surface

temperature from each ensemble member and for each

start month January–May preceding the summer. The

cross-validated skill scores for the various regression

models are shown in Fig. 5. Many of the regression

models have statistically significant skill for some choice

of regularization parameter, in the sense that the cross-

validated skill is positive and the standard error does not

include zero. The fact that the skill is statistically sig-

nificant (in contrast to observations) is attributed to the

larger sample size as a result of pooling ensemble

members and initial start months. Hastie et al. (2003)

FIG. 5. CVSS for predicting Texas-area summer (JJA) temperature based on Pacific SSTs between 308S and 608N
in the dynamical models using (a) a truncated set of Laplacians, (b) PCR, (c) ridge regression, and (d) LASSO. The

error bars show the standard error of the skill score at the maximum score.
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suggest selecting the simplest model within one standard

deviation of the best model. This criterion suggests se-

lecting three Laplacian eigenvectors in Laplacian re-

gression and 13 or fewer EOFs for PCR. It also suggests

selecting a ridge parameter around 1025 (when skill

exists), and a LASSO parameter around 1023. Note that

some models show skill even in the case of l ’ 0,

suggesting that the sample size is sufficiently large that

regularization is not required (although it is noteworthy

that the maximum number of Laplacian eigenvectors is

50, which is itself a kind of regularization).

To gain insight into the spatial structure associatedwith

the predictive relations, we show the regression map be-

tween JJA SST and the Texas-area temperature pre-

dicted from those SSTs in the model. Equivalently, the

regression map is defined in (7), except that the predictor

T(n) is replaced by the Texas temperature predicted

by the regression model. For consistency, we use the

FIG. 6. Regression maps derived from NMME seasonal prediction models using LASSO. The regression pattern has been scaled so that

the maximum absolute value is one. The regularization parameter is chosen to maximize the CVSS in each model separately.
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regularization parameter that maximizes the CVSS in

eachmodel. The regressionmaps associatedwithLASSO

and ridge are shown in Figs. 6 and 7, respectively. Most

regression maps indicate that the predictive relation is

dominated by a hot spot in the North Pacific and cooling

to the southeast, consistent with the regression pattern

derived from observations. We emphasize that these re-

gression patterns were derived strictly from models with

no input from observational data. The strong similarity

between regression patterns derived independently from

observations and distinct dynamical models gives us

substantial confidence that SSTs and Texas-area tem-

perature are indeed related in nature and that this re-

lation is captured by dynamical models.

c. Regressions learned from dynamical models and
tested in observations

We next test whether predictive relations derived

from dynamical model output give skillful predictions of

observations. Specifically, we derive a regression model

FIG. 7. As in Fig. 6, but using ridge regression.
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from each dynamical model and then use that regression

model to predict observed JJA Texas-area temperature

based on observed JJA Pacific SST. We emphasize that

observations are not used to construct the regression

models directly. Although observations were used to

initialize the dynamical models, these observations do

not constrain the land–SST relation in JJA because we

use only hindcasts initialized in antecedent months. In

this sense, JJA observations constitute independent

verification data.

The correlation skill between predicted and observed

Texas-area temperature for each model and regulari-

zation is shown in Fig. 8. Regression based on a trun-

cated set of Laplacian eigenvectors (Fig. 8a) yields

skillful models only when estimated from certain

dynamical models and for truncations greater than

five. However, we might have selected only three

eigenvectors based on the training results shown in

Fig. 5, which would not have yielded skill. In contrast,

regularized regressions derived from dynamical

models using PCR, ridge, and LASSO yield skillful

predictions of observations for reasonable choices

of regularization parameter, although for certain

models the skill is insignificant, but still positive. The

contrast between Figs. 3 and 8 is striking.

d. Prediction based on antecedent SST

Instead of predicting JJA Texas-area temperature

using concurrent SSTs, we now discuss predictions using

antecedent (MAM) SSTs. Repeating the above analysis,

the correlation skill of regressionmodels estimated from

dynamical model output, and then used to predict ob-

servations, is shown in Fig. 9. In contrast to the results

shown in Fig. 8, only two regression models have

FIG. 8. Correlation skill of predicting summer Texas-area temperature using regression models derived from

NMME dynamical forecast models, as a function of regularization parameter, using (a) a truncated set of Lap-

lacians, (b) PCR, (c) ridge regression, and (d) LASSO. The horizontal dashed line is the 5% significance threshold

of skill.
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statistically significant skill (viz., those estimated from

NASA and CanCM3), and this skill occurs only for a

narrow range of regularization parameters. However,

these models do not have significant skill in their re-

spective dynamical models (not shown), so it is not likely

that they would have been chosen based on training

data. This result suggests that while there exists a

concurrent relation between SST and Texas-area tem-

perature, there exists little to no ‘‘precursor’’ SST to

Texas-area temperature, at least in dynamical models

(Fig. 9), in observations (not shown), and from the

multimodel regression (also not shown).

e. Skill of NMME hindcasts

We now use the above results to understand the skill

of NMME hindcasts. For each model initialized in May,

the correlation skill of Texas-area temperature is shown

as the red triangles in Fig. 10. Figure 10 shows that none

of the models have skill. Yet we showed above that

regression models derived from dynamical model out-

put produce skillful predictions based on concurrent

SST. How can these results be reconciled? An obvious

answer is that dynamical models were not able to predict

the JJA SST accurately. In other words, predictability

exists when the SSTs are known exactly, but the SSTs

themselves could not be predicted with skill. To explore

this hypothesis further, we show in Fig. 10 the correla-

tion between model-predicted and regression-predicted

JJA Texas-area temperature for May starts, where the

regression prediction is based on concurrent SSTs in the

model (black-filled circles). These correlations are fairly

high and demonstrate that the regression model can

recover much of the model hindcast when given the

correct SSTs. If the model SSTs are then replaced by

observed SSTs in the regression model, the resulting

correlation skill, shown as the blue plus symbols in

Fig. 10, typically are statistically significant and lie be-

tween the previous two correlations. These results

FIG. 9. As in Fig. 8, but using one-season (MAM) lagged SSTs.
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suggest that the reason the NMME models had no sig-

nificant skill in predicted Texas-area temperature is not

because they could not capture the SST teleconnections

but because the SST themselves could not be predicted

accurately.

f. Multimodel regression

We next consider regressions based on a combination

of dynamical models. Specifically, we estimate a re-

gression model by pooling all 11 000 and more dynami-

cal model hindcasts (as well as all initial start times and

ensemble members) together. The resulting model is

then used to predict observations. The resulting skill as a

function regularization parameter is shown in Fig. 11.

The multimodel regression model has significant skill

and, moreover, tends to have skill near the top of the

individual model skills (as can be seen by comparing

Fig. 11 and Fig. 8).

g. Sensitivity to sample size

We now quantify the sensitivity of skill with respect to

sample size. Figure 12 shows the correlation skill as a

function of sample size of regression models for pre-

dicting observed Texas-area temperature, where the

sample is drawn randomly from the 11 000 and more

realizations of the multimodel hindcast dataset. For

each sample size and for each choice of regularization

parameter, 10 independent estimations are performed.

The results indicate that negative correlations are

common even for sample sizes around 100 and that

statistically significant correlations become robust only

for sample sizes greater than 500. For less than 50 sam-

ples (the real world of observations), the correlations

tend to be insignificant. Truncating based on Laplacian

eigenvectors fails to produce skillful regressions for

large sample size, in contrast to PCR, ridge, or LASSO.

5. Summary and conclusions

A characteristic problem in statistical seasonal pre-

diction is to find a predictive relation between one var-

iable and a field of other variables (e.g., SST). To solve

this problem, we proposed a regularized regression

procedure in which a linear prediction model is esti-

mated under a smoothness constraint on the coefficients.

The smoothness constraint is motivated by the fact that

small-scale SST structures are difficult to observe and

not robust across models, so it is prudent to filter them

out. This constraint was imposed by representing the

predictor field by a sum of Laplacian eigenvectors and

then constraining the corresponding weighting co-

efficients to be small or zero. Because the temporal

variance of SST patterns tends to increase with spatial

scale, constraining the coefficients of the Laplacian ei-

genvectors directly, without the standard rescaling, is

tantamount to penalizing small-scale patterns more

strongly than large-scale patterns. The resulting re-

gression problem is equivalent to ridge or LASSO re-

gression and can be solved by standard algorithms.

In addition, we explored an unconventional pro-

cedure in which an empirical prediction model is esti-

mated from dynamical model output and then verified

against observations—the reverse of the traditional or-

der. Obviously, this approach works only if the un-

derlying dynamical model is realistic. However, to the

extent that the dynamical model is realistic, a major

advantage of this approach is that the sample size

available from dynamical models is orders of magnitude

larger than of observational data, which allows for the

estimation of significantly more robust empirical

models. Also, large differences in the skill of the em-

pirical models indicate large differences in the realism of

the underlying dynamical models, which may provide

clues for model development.

The above approach was used to predict summer

Texas-area temperature based on concurrent Pacific

SST during the period 1982–2014. For comparison, we

also applied principal component regression, in which

the regression model is based on a linear combination of

FIG. 10. Correlations of Texas-area temperature between

model hindcast and regression based on model SST (black-filled

circles), model hindcast and observed (red-filled triangles), and

observed and regression based on observed SST (blue plus sym-

bols). The regression is based on ridge regression using l5 1025.

Model hindcast quantities are based on a six-member mean ini-

tialized in May. The vertical line is the 5% significance threshold

of skill.
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the leading EOFs of SST. An important consideration is

that temperature during this period experiences signifi-

cant trends and these trends can dominate the regression

relations. Accordingly, all analyses were conducted for

detrended data. When applied to observations, none of

the regularized regression models had significant cross-

validated skill. In contrast, when the regularized

regression models were trained on dynamical model

output, they were able to predict dynamical model

output with significant skill. The higher skill is attributed

to the larger sample size afforded by multiple ensemble

members and start times. The associated regression

patterns were similar across models, in the sense that all

of them showed a ‘‘hot spot’’ in theNorth Pacific, but the

cooling patterns in the tropical Pacific and easternNorth

Pacific were less robust. The regression models derived

from dynamical models were then used to predict ob-

servations. We emphasize that the regression models

derived from dynamical model output do not utilize any

observational data. Although observations were used to

initialize the dynamical models, these observations do

not constrain the land–SST relation in JJA because we

use only hindcasts initialized in antecedent months. In

this sense, JJA observations constitute independent

verification data. PCR, ridge, and LASSO models

trained on dynamical model output gave skillful pre-

dictions of observational data for reasonable choices of

regularization parameter. In addition, a multimodel re-

gression model was estimated by pooling all model

hindcasts together (over 11 000 samples) and shown to

produce skillful predictions of observed Texas-area

temperature, with skill near the top of any individual

model skill.

Most regression models had insignificant skill in pre-

dicting observed anomalies with antecedent SSTs.

Although a small number ofmodels did have correlation

skill exceeding the significance threshold, this occurred

for a narrow range of regularization parameters that

FIG. 11. As in Fig. 8, but for a multimodel regression model.
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would not necessarily have been selected based on

training data. The fact that skill apparently disappears

when using antecedent SST suggests that summer

Texas-area temperature is difficult to predict in advance.

Consistent with this, none of the NMME hindcasts

themselves had skill in predicting JJA Texas-area tem-

perature based on May (or earlier) start months. How

can the NMME models have no skill when regression

models derived from them do? The key is to recognize

that the regression models had skill only when using

concurrent SSTs; they did not have skill when using

antecedent SSTs. The fact that regression models de-

rived from dynamical model output had skill suggests

that the reason the NMME models had no skill is not

because they did not capture realistic relations with SST

but because they could not accurately predict the rele-

vant SST pattern.

We also explored the sensitivity of skill to the sample

size used to estimate the regression model. For sample

sizes less than 50, few of the regression models had

statistically significant skill. The regression models ten-

ded to have positive skill only for sample sizes greater

than 100 and statistically significant skill for sample sizes

greater than 500. These results imply that estimating

robust, skillful regression models from 50 years of ob-

servational data is difficult.

This study demonstrates that regularized regression

models trained on dynamical model output can yield

empirical prediction models with significant skill, even

though the samemethods applied to observations do not

FIG. 12. Correlation skill of regression models for predicting observed JJA Texas-area temperature as a function

of sample size, where the sample used to estimate the regression is drawn from dynamical model output. The

different regressions are based on (a) a truncated set of Laplacians, (b) PCR, (c) ridge regression, and (d) LASSO.

The different colors and symbols show different values of the regularization parameter, as indicated in the bottom

legends, and the 10 points in each column show 10 different estimations from the full 11 000 and more sample

multimodel hindcast dataset.
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yield skillful empirical prediction models. This study

also confirms that dynamical models can capture the

SST regression pattern related to Texas-area tempera-

ture. It is especially noteworthy that a regression model

derived strictly from dynamical model output can pro-

duce skillful predictions in observational data. Such

consistency not only demonstrates the validity of the

regression methodology but enhances confidence in the

existence of a predictive relation in both models and

observations.
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